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Short Papers

Electrostatic Potential Due to a
Potential Drop Across a Slit

Young C. Noh and Hyo J. Eom

Abstract—The electrostatic potential and charge density due to a
potential drop across a slit in a thick conducting plane are obtained
in analytic closed form. The Fourier transform, mode matching, and
superposition are used to represent the potential in the spectral domain.
The residue calculus is applied to represent the potential distribution
in converging series form. Numerical computations are performed to
illustrate the charge–density distribution through a slit.

Index Terms—Electrostatic potential, Fourier transform, mode match-
ing, slit.

I. INTRODUCTION

A study of potential difference across a slit in a conducting plane
is an important subject for narrow-slit aperture antenna applications.
A potential distribution due to a potential drop across a thick slit
was considered in [1] using the Schwarz–Christoffel transformation.
The motivation of this paper is to consider the electrostatic potential
and charge density through the slit when a potential drop is applied
across the slit in a thick conducting plane. We use the Fourier
transform, mode matching, and superposition to obtain a converging
series solution. Note that the Fourier transform and mode-matching
technique have been successfully used in the study of static potential
distribution through a slit [2]. In Section II, we present the field
analysis in the spectral domain, and a brief summary is given in
the conclusion.

II. FIELD ANALYSIS

Consider a slit with a thicknessd and width2a in a thick perfectly
conducting plane, shown in Fig. 1. The right and left conducting
planes are assumed to be at potentialsV and 0, respectively. In
regions I(z > 0) and III (z <�d), the potentials take the forms
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(x;�d). It is convenient to separate the boundary-

value problem in region II(�a<x<a, �d<z< 0) of Fig. 1 into
two different cases [(a) and (b)], as shown in Fig. 2(a) and (b),
respectively. Using the technique of the separation of the variable,
we represent the potential in case (a) as a linear combination of
cosh[am(z+d=2)] sinam(x+a). The solution to the boundary-value
problem for case (b) is available in [3]. Using the superposition, the
total potential in region II is given by a sum of the solutions to the
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Fig. 1. Geometry of potential problem.
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Fig. 2. Boundary conditions of region II.

boundary-value problems, i.e., cases (a) and (b):
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wheream = m�=(2a), m = 1; 2; 3; � � �, andk = 1; 3; 5; � � �.
By symmetry of the boundary condition, we note�I
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This implies that we only need to enforce the boundary condition at
z = 0. The boundary conditions to be enforced are
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Applying the Fourier transform to (4), we obtain
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Substituting (3) into (6), and performing integration
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where �(�) is the Dirac delta andFm(�) = am[(�1)
mei�a �

e�i�a]=�2 � a2m. Substituting�I
(x; z) of (1) into (5), multiplying
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(5) by sin an(x + a), and integrating, with respect tox, from �a

to a, we obtain

�
1

2�

1

�1

~�
I
(�)j�jFn(��) d�

= aanbn sinh
and

2
+

4V

d

1

k=1

an cosn�

(k�=d)2 + a2n
: (8)

Substituting (7) into (8), we obtain
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It is shown in [2] that
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ci(�) andsi(�) are the cosine and sine integrals, respectively. Substi-
tuting (10) into (9), we get
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Fig. 3. Charge–density distribution.

Substituting (7) into (1) and performing the contour integration
with respect to�, we obtain�I

(x; z) in convergent series forms (15)-
(17), shown at the bottom of the page, whereIm[�] is the imaginary
part of [�] andK(�; �) = (1=�) [ci(��) sin(��)� si(��) cos(��)].
Equations (3) and (15)–(17) constitute converging series solutions
for the potential distribution through a thick slit. From (1) to (3),
we obtain the charge–density distribution on the conducting surface,
shown in (18), at the bottom of the page, whereP (�; �) = ci,
(��) cos(��) + si, (��) sin(��), and � is the permittivity. Fig. 3
shows the behavior of the charge densityj�sj=� on the conducting
surface whena = 0:5 and V = 1. We usem = 31 in (18) to
achieve the numerical accuracy within 1% error. Asd=a increases, the
convergence rate of (18) becomes better. It is seen thatj�s(x; 0)j=�

remains almost unchanged asd varies. Whenx<�2, j�s(x; 0)j=�
almost approachesV=�(a�x), implying an influence from the charge
near the slit is negligible. Whend is rather large (i.e.,d = 5),
j�s(�a; z)j=� ' 1 except near a singular point atz = 0. Note that
j�s(�a; z)j=� = 1 for an infinitely thick slit (d = 1).

III. CONCLUSION

The potential distribution due to a potential drop across a slit is
solved with the Fourier transform, mode matching, and superposi-
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tion. The solutions are represented in convergent series form, and
numerical computations are performed to show the charge–density
distribution through the slit.
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A Numerically Efficient Technique for the
Analysis of Slots in Multilayer Media

Noyan Kınayman, G̈ulbin Dural, and M. I. Aksun

Abstract—A numerically efficient technique for the analysis of slot
geometries in multilayer media is presented using closed-form Green’s
functions in spatial domain in conjunction with the method of moments
(MoM). The slot is represented by an equivalent magnetic-current distri-
bution, which is then used to determine the total power crossing through
the slot and the input impedance. In order to calculate power and current
distribution, spatial-domain closed-form Green’s functions are expanded
as power series of the radial distance�, which makes the analytical
evaluation of the spatial-domain integrals possible, saving a considerable
amount of computation time.

Index Terms—Green’s function, moment methods, multilayers.

I. INTRODUCTION

Slot geometries have a broad spectrum of applications either as
transmission lines or radiating elements, and have been examined ex-
tensively in the literature [1]–[4]. The most commonly used numerical
technique for analyzing the slot geometries is the method of moments
(MoM), which can be applied in either the spatial or spectral domains.
Although the MoM is preferred over the differential equation methods
because it is relatively efficient in terms of the computation time,
it is still time consuming because of the slow convergence and
the oscillatory nature of the integrals involved. One approach to
overcome these difficulties is to employ the closed-form Green’s
functions in the spatial domain, which can speed up the computation
of the MoM matrix elements by several orders of magnitude as
compared to the numerical evaluation of the Sommerfeld integral
[5]–[8].

In this paper, the Galerkin’s MoM analysis of the slot geometries
in multilayer media has been developed by employing the closed-
form Green’s functions for the vector and scalar potentials of a
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Fig. 1. A slot structure on a multilayer medium. The region above the slot
is free space.

horizontal magnetic dipole (HMD) in the spatial domain [9]. The
formulation is presented for narrow slot geometries excited with
coaxial-line feed; however, it can be applied to slot geometries of
any kind of excitation without any major modification. The equivalent
magnetic-current distribution of the slot is computed and used for the
computation of power crossing the slot and the input impedance.
Numerical calculation of power crossing the slot and the equivalent
magnetic slot current is computationally a very demanding procedure
because the numerical evaluation of the integrals involved is very time
consuming in either the spatial or spectral domains. Here, the spatial-
domain Green’s functions are approximated as a power series of radial
distance�, and integrals involving the Green’s functions are carried
out analytically, saving a considerable amount of computational time
both in current and power calculations [10].

II. FORMULATION

An example of a narrow slot placed in a multilayer medium is
shown in Fig. 1. It is assumed that the layers extend to infinity in
the transverse direction and the slot is excited with a coaxial line
of currentIin amperes at the feeding point. It is also assumed that
there is no conducting or dielectric losses. Therefore, the only loss
mechanism is the radiation.

The tangential component of the magnetic field on the slot can
be expressed in terms of an equivalent magnetic-current density~Jm

using the mixed-potential integral equation (MPIE) formulation [11]
as follows:
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whereJmx is the longitudinal component of the current density~Jm,
andGFxx andGqx are the spatial-domain Green’s functions for the
vector and scalar magnetic potentials for an HMD, respectively. To
solve for the equivalent magnetic current densityJmx using the MoM,
the current density is expressed as a linear combination of suitable
subdomain basis functions in the following form:

J
m
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whereBxn’s are the basis functions which are chosen in this paper
to be rooftops. Since a narrow slot is assumed, the current variation
in y-direction is considered to be constant. Enforcing the boundary
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