428 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998

Short Papers

Electrostatic Potential Due to a

Potential Drop Across a Slit
-a regionl a
Young C. Noh and Hyo J. Eom

Abstract—The electrostatic potential and charge density due to a
potential drop across a slit in a thick conducting plane are obtained
in analytic closed form. The Fourier transform, mode matching, and
superposition are used to represent the potential in the spectral domain.
The residue calculus is applied to represent the potential distribution
in converging series form. Numerical computations are performed to region 111
illustrate the charge—density distribution through a slit.

Index Terms—Electrostatic potential, Fourier transform, mode match- Fig- 1. Geometry of potential problem.

ing, slit.
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I. INTRODUCTION D x,0) a a 0 a

A study of potential difference across a slit in a conducting plang1 X X
is an important subject for narrow-slit aperture antenna applications.
A potential distribution due to a potential drop across a thick slit 0
was considered in [1] using the Schwarz—Christoffel transformation.
The motivation of this paper is to consider the electrostatic potential
and charge density through the slit when a potential drop is applled(I) (X -d)
across the slit in a thick conducting plane. We use the Fourier
transform, mode matching, and superposition to obtain a converging @ (b)
series solution. Note that the Fourier transform and mode-matchifig. 2. Boundary conditions of region II.
technique have been successfully used in the study of static potential
distribution through a slit [2]. In Section Il, we present the fiel
analysis in the spectral domain, and a brief summary is given
the conclusion.

region I 0 region II v

]

dE)r?undary-value problems, i.e., cases (a) and (b):

(I‘”(:c, z) = Z b,,, cosh |:(1,m <: >:| sin anm, (z + a)

m=1

Il. FIELD ANALYSIS le’(J +a)

Consider a slit with a thicknessand width2a in a thick perfectly 4V i sy FTE 3)
conducting plane, shown in Fig. 1. The right and left conducting T hZu d
planes are assumed to be at potentilsand 0, respectively. In
regions I(z >0) and Ill (»z < —d), the potentials take the forms  whereaq,, = mw/(2a), m =1,2,3,---, andk = 1,3,5, - - -.

\ L[>~ lele—ica By symmetry of the boundary condition, we nofg(z,0) =
(. 2) :E/ 2 (Q)e e D) "z, —d) and (8d"(x, 2)/02)|.—0 = — (0B (2, 2)/02)]-=—a.

k=1 ksinh

This implies that we only need to enforce the boundary condition at

M2, 2) = {%/ l(()elclzFD e g0 (2) == 0. The boundary conditions to be enforced are

0, < —a
where ®!(¢) is a Fourier transform of'(z,0) given by &'(¢) = 3'(2.0) = { ‘I{ll(éf»o)a 2] <a (4)
J°°., ®'(,0)e™” da. The use of®'(¢) in (1) and (2) implies that V. r>a

d'(2,0) = ®""(x, —d). It is convenient to separate the boundary- 9D (x, 2) o®" (x, z)
Jz

value problem in region Il—a <z < a, —d < z < 0) of Fig. 1 into 9z
\pplying the Fourier transform to (4), we obtain

|| < a. (5)

z=0 z=0

two different cases [(a) and (b)], as shown in Fig. 2(a) and (b
respectively. Using the technique of the separation of the variab
we represent the potential in case (a) as a linear combination of d'(¢) = /'“ 3" (2,006 do 4+ V /°° RIT. ©)
coshlam (z+d/2)] sin am (x+a). The solution to the boundary-value ' —a a

problem for case (b) is available in [3]. Using the superposition, the Substituting (3) into (6), and performing integration
total potential in region Il is given by a sum of the solutions to the

Am - s iCa - 1
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(5) by sina,(x + a), and integrating, with respect to, from —a
to a, we obtain

1 OO0

(k)I -
~5r | BOWKIF(=0) ¢

and 4V > A COSNT
= aapby sinh — 4+ — ——. (8
aa sinh = + d ,; (ke Jd)? + a2 (8)

Substituting (7) into (8), we obtain
= Am
— Z b, cosh 5
m=1
—(-1" |:‘— + L si(nTr):| = aanb, sinh ﬂ
™

Vv =)
T2 Gajde s a2

k=1

d1 [~ )
3 | KRR (=0 4

_1;

ayp COSNT

(km/d)2+ a2’

9)

It is shown in [2] that

1 [~
ﬁ/ |C|Fm(C)Fn(_<) (]C = A0ndnm — Jnm (10)
whereé,,., is the Kronecker delta and
, m + n = odd
20 Am { <<Ln )
— " _|In
m(aZ — a2, QA
Jn m = . 11
+ci(mw) — ci(nw) |, m +n = even (11)
anl

—=[2 = (n7) si(nw)], m=n

Ty,

ci(+) andsi(-) are the cosine and sine integrals, respectively. Substurface when: = 0.!

tuting (10) into (9), we get
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Fig. 3. Charge—density distribution.

Substituting (7) into (1) and performing the contour integration
with respect taZ, we obtain®' (x, z) in convergent series forms (15)-
(17), shown at the bottom of the page, wheéug-] is the imaginary
part of [ andk (8, 1) = (1/) [ci(p) sin(Bp) — si( Bu) cos(Bp).
Equations (3) and (15)—(17) constitute converging series solutions
for the potential distribution through a thick slit. From (1) to (3),
we obtain the charge—density distribution on the conducting surface,
shown in (18), at the bottom of the page, whedPé¢s, u) = i,
(Bp)cos(Bp) + si, (Bp)sin(Bu), ande is the permittivity. Fig. 3
shows the behavior of the charge dengjty|/¢ on the conducting
5andV = 1. We usem = 31 in (18) to
achieve the numerical accuracy within 1% error.d¥s increases, the
convergence rate of (18) becomes better. It is seen|phéat, 0)|/¢

B=v"'T (12) remains almost unchanged dsvaries. Whenz < —2, |p.(x,0)|/€
almost approachds/ = (a—z), implying an influence from the charge
where B andI' are column vectors of.. and . near the slit is negligible. Whed is rather large (i.e.d = 5),
elam—an)d/2 | —(amtan)d/2 |ps(—a, z)|/e ~ 1 except near a singular point at= 0. Note that
Ynm = bnm — Sa Tam (13)  |p.(—a, z)|/e = 1 for an infinitely thick slit(d = co).
e 2y Yy 4V &
o :(_1),&16 5_'__ si(nm) + = Z - ; S— 11l. CONCLUSION
Aln T = (kr/d)*+a3 The potential distribution due to a potential drop across a slit is
(14) solved with the Fourier transform, mode matching, and superposi-
(. 2) = Z @mbm cosl dmd Im{(-1)"Kam,a —z +iz] — K|ay,, —(a+x) +iz]} + L arctan (a — J) < —a
’ = 2 ’ ’ ’ 2 T z ’
(15)
aVVLbTYl (L’Vld m . (l‘,n(l —(] z M
= Z ——= cosh — - Im{(—1)" K[am,a —x + iz] — K[am,a + © + 2]} + b, cosh —— ™% 8in a,, (a + x)
m
m=1
+ v.r arctan (a — I) |z < a (16)
2 T z
(1/771b7n a/nzd m - . - . ‘r ‘7 xr —a
= Z cosh 5 Im{(—1)" Klam,x —a+iz] — Klam,a + 2z +iz]} + — —|——ar(’mn( . ), x>a (17)
™
m=1
Z b cosh <am. )[( )" P(am,a —x)—Plam, —a — x)] + v.1 ) z<—a,z=0
el ™ m™a—=r
|p-‘f('7“,‘ /‘)| _ krz p (18)

. = oo d 4 & sin 7
Zarnbnz COSh |:am <Z + §>:| _7 Z 1.9

km2a’ 2
d

" k=1,3sinh

m=1

_—<z<0,;n:—a



430 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998

tion. The solutions are represented in convergent series form, and
numerical computations are performed to show the charge—density
distribution through the slit.
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Fig. 1. A slot structure on a multilayer medium. The region above the slot
is free space.

A Numerically Efficient Technique for the horizontal magnetic dipole (HMD) in the spatial domain [9]. The
Analysis of Slots in Multilayer Media formulation is presented for narrow slot geometries excited with
coaxial-line feed; however, it can be applied to slot geometries of
any kind of excitation without any major modification. The equivalent
magnetic-current distribution of the slot is computed and used for the
Abstract—A numerically efficient technique for the analysis of slot Compu.tatlon of power crossing the TQ'IOt and the input lmpe_dance.
geometries in multilayer media is presented using closed-form Green’s Numerical calculation of power crossing the slot and the equivalent
functions in spatial domain in conjunction with the method of moments Mmagnetic slot current is computationally a very demanding procedure
(MoM). The slot is represented by an equivalent magnetic-current distri- because the numerical evaluation of the integrals involved is very time

bution, which is _then _used to determine the total power crossing through consuming in either the spatial or spectral domains. Here, the spatial-
the slot and the input impedance. In order to calculate power and current

distribution, spatial-domain closed-form Green'’s functions are expanded df)ma'” Green S functl0n§ are gpprOXImated Zi’lS a povyer seres of r.adlal
as power series of the radial distancep, which makes the analytical ~distancep, and integrals involving the Green’s functions are carried
evaluation of the spatial-domain integrals possible, saving a considerable out analytically, saving a considerable amount of computational time
amount of computation time. both in current and power calculations [10].

Noyan Kinayman, @lbin Dural, and M. I. Aksun

Index Terms—Green’s function, moment methods, multilayers.
Il. FORMULATION

|. INTRODUCTION An example of a narrow slot placed in a multilayer medium is

Slot geometries have a broad spectrum of applications eithertsigz?soWn In Fig. 1. It is assumed that the layers extend to infinity in

A e . € transverse direction and the slot is excited with a coaxial line
transmission lines or radiating elements, and have been examined ex- . . .
o?xcurrentfiu amperes at the feeding point. It is also assumed that

tensively in the literature [1]-[4]. The most commonly used numeric . . ) .
. . S ﬁ?ere is no conducting or dielectric losses. Therefore, the only loss
technique for analyzing the slot geometries is the method of moments

: S . —mechanism is the radiation.
(MoM), which can be applied in either the spatial or spectral domams.The tangential component of the magnetic field on the slot can

Although the MoM is preferred over the differential equation methodbs . . . .
o . Iy . . .~ De expressed in terms of an equivalent magnetic-current defiSity
because it is relatively efficient in terms of the computation time

it is still time consuming because of the slow convergence ar%filr;glItglvismlxed-potentlal integral equation (MPIE) formulation [11]

the oscillatory nature of the integrals involved. One approach ?o
overcome these difficulties is to employ the closed-form Green's H, = —juGE «Jm + L ﬂ(sz V- J™) (1)
functions in the spatial domain, which can speed up the computation C Jw O

of the MoM matrix elements by several orders of magnitude

. - . ere.J;" is the longitudinal component of the current densff&’},
compared to the numerical evaluation of the Sommerfeld integr, dGE, andGo are the spatial-domain Green’s functions for the
[51-8]. |

. ., . . vector and scalar magnetic potentials for an HMD, respectively. To
In this paper, the Galerkin’'s MoM analysis of the slot geometrie Ive for the equivalent magnetic current densify using the MoM,

in multilayer media has been developed by employing the clos ﬁ)

\ . ) e current density is expressed as a linear combination of suitable
form Green’s functions for the vector and scalar potentials of &

ubdomain basis functions in the following form:
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